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Quantum stochastic differential inclusions are introduced and studied within the 
framework of the Hodson-Parthasarathy formulation of quantum stochastic cal- 
culus. Results concerning the existence of solutions of a Lipschitzian quantum 
stochastic differential inclusion and the relationship between the solutions of such 
an inclusion and those of its convexification are presented. These generalize the 
Filippov existence theorem and the Filippov-Wa~wski relaxation theorem for 
classical differential inclusions to the present noncommutative setting. 

1. INTRODUCTION 

There are interesting motivations (Hermes, 1970) for studying classical 
differential inclusions. For  an account of  these and a review of  some of  the 
important developments in the study o f  classical differential inclusions up 
to 1984, see Aubin and Cellina (1984). In this paper, we introduce and 
study quantum stochastic differential inclusions within the framework of  the 
Hudson and Parthasarathy (1984) formulation of  quantum stochastic cal- 
culus. Such inclusions occur in, for example, quantum stochastic control 
theory and the theory of  quantum stochastic differential equations with 
discontinuous coefficients. We present results concerning the existence of  
solutions of  a Lipschitzian quantum stochastic differential inclusion and the 
relationship between the solutions of  such an inclusion and those of  its 
convexification. 

The rest of  the paper is organized as follows. In Section 2, some o f  the 
concepts and structures which feature in the subsequent analysis are out- 
lined. The stochastic processes discussed in the sequel are noncommutative; 
these a n d  the boson stochastic integrators employed in the Hudson and 
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Parthasarathy (1984) stochastic calculus are introduced in Section 3. Our 
formulation of quantum stochastic differential inclusions is presented in 
Section 4. In Section 5, we define Lipschitzian multifunctions and obtain a 
relationship between such multifunctions and their convexifications. In Sec- 
tion 6, equivalent forms of the stochastic differential inclusions introduced 
in Section 4 are established. These equivalent forms are inclusions which are, 
in general, different from classical differential inclusions. Section 7 contains a 
list of some fundamental statements that areemployed in the remaining two 
sections. The main results of this paper are established in Sections 8 and 9. 
In Section 8, the existence of solutions to Lipschitzian quantum stochastic 
differential inclusions is established (Theorem 8.2). This result also repre- 
sents a generalization of the Gronwall-Filippov inequality (Aubin and 
Cellina, 1984) to the present noncommutative setting.: Finally, Section 9 
contains a closure theorem (Theorem 9.1) which establishes a relationship 
between the solutions of a Lipschitzian quantum stochastic differential inclu- 
sion and those of its convexification. 

2. :FUNDAMENTAL CONCEPTS AND STRUCTURES 
+ r  

We begin by first outlining some of the concepts and structures which 
are employed in the sequel. 

To each pair (D, H) consisting of a pre-Hilbert space D and its comple- 
tion H we associate the se t /~(D,  H) of all linear maps x from D into H 
with the property that the domain of the operator adjoint x* of x contains 
D. The members of L~(D, H) are densely-defined linear operators on H 
which do not necessarily leave D invariant and/_~(D, H) is a linear space 
when equipped with the usual notions of addition and scalar multiplication. 
We remark that L~(D, H) may be additionally endowed with the structure 
of a partial *-algebra in a natural way, for details of this, see Antoine and 
Mathot (1987). 

To H also corresponds a Hilbert space F(H), called the boson Fock 
space determined by H. A natural dense subset of F(H) consists of the linear 
space generated by the set of exponential vectors (Guichardet, 1972) in F(H) 
of the form 

e(S)= 
n ~ O  

where @of= I and @ " f  is the n-fold tensor product of f with itself for 
n_>l. 

In  what follows, D is some pre-Hilbert space whose completion is 9~, 
and T is a fixed Hilbert space. 
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We write L2(R+) (reap. L~([O, t)); resp. L2y([t, oo)), tE@~+)for the 
Hilbert space of square integrable, T-valued maps on R§ [0, oo) (reap. 
on [0, t); resp. on [t, oo) toil+). 

The noncommutative stochastic processes discussed in the sequel are 
densely-defined linear operators on ~ | F(L~(R+)); the inner product of this 
Hilbert space will be denoted by ( . ,  �9 ). 

For each t > O, the direct sum decomposition 

L~,(~+) = L~([O, O)(VL~([t, oo)) 

induces a factorization 

F(L~-(a+)) = r(L2y([O, t)))| oo))) 

of Fock space. 
Let E, E,, and E t, t > O, be the linear spaces generated by the exponential 

vectors in 

r'(L~(R+)), r(L~-([O,t))), and F(L2([ t ,~)) ) ,  t>O 

respectively. Then, we introduce the definitions 

~r E, ~| 
d,-L~(D@E,, ~I| t))))| 

d ' - L |  F(L~([t, oo)))), t>0 

where | denotes the algebraic tensor product and 4, (reap. ~') denotes the 
identity-map on ~t| t))) [resp. F(L2r([t, ~)))] ,  t>0.  It is evident 
that the spaces ~r and ~r t > 0, may be naturally identified with subspaces 
of ,~r 

For q, ~ED@E, define I1" I1~.+ by 

Ilxll,.r x~>l. x ~ r  

Then {11" I1~,r r/, ~eD~_ n:} is a family of locally convex seminorms on d ;  
we write rw for the locally convex topology on ~r determined by this family. 

In the sequel, ~ ,  ~ t ,  and ~ '  denote the completions o f  the locally 
convex spaces (~r rw)~ (~r rw), (~r rw), t>O, respectively, We remark 
that the net  {,~, : teR+} is a filtration of ~'. 

Hausdorff topology. If .4 is a topological space, then clos(A) [resp. 
comp('4)] denotes the collection of all nonvoid closed (resp. compact) subsets 
of "4. 

We shall employ the Hausdorff topology on clos(~). This is defined as 
follows. 
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and 

For x6.~,  .~', ~f'~clos(~), and ~/, ~ D ~ _  IF, set 

d,l,r ~r inf IIx-yll,,,r 
.V~.A r 

(~,.~(.,~', vF )=  sup d,.{(x, ~F) 
x ~ - , ~  

p,.r vl/') --max(6r162 .At), (~r162 ~ ' ) )  

Then {p,,~( �9 ): r/, ~e D _~IF} is a family ofpseudometrics (Kelly; 1955) which 
determines a Hausdorff topology on clos(~) denoted in the sequel by ZH. 

If Jt'eclos(z~), then II-~lln.~ is defined by 

I1~11,.r =p , . r  ', {0} ) 
for arbitrary I/, ~ ~ D _~ IF. 

Similarly, for A, B~clos(C) and xeC, the complex numbers, let 

and 

d(x, A) --- inf Ix-yl  
yea 

6(A, B) -= sup d(x, B) 
x ~ A  

p(A, B)_= max((~(A, B), 8(B, A)) 

Then, p induces a metric topology on dos(C). 
Sets: We employ the usual set-theoretic operations, such as 

A + B= {a+ b: aeA and br 

a + B = { a + b : b ~ B }  

for sets A, B and a point a. 

3. BOSON STOCHASTIC INTEGRATORS 

Let I~_ R+. A stochastic process indexed by I is an z~-valued map on L 
A stochastic process X is called adapted if X(t) E ~ ,  for each t ~ L 
We write Ad(.~) for the set of all adapted stochastic processes indexed 

by I. 

Definition. A member X of Ad(~)  is called (i) weakly absolutely con- 
tinuous if the map t ~-. ( 11, X ( t) ~ ), t ~ I, is absolutely continuous for arbitrary 
r/, ~ E D ~_ IF; (ii) locally absolutely p-integrable if IIX(' )II ~,r is Lebesgue.meas- 
urable and integrable on [0, t ) c l  for each t e l  and arbitrary i/, ~E D _~IF. 
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Notation. We write Ad(a~)w,~ [resp. Lf,~(~)] for the set of all weakly 
absolutely continuous (resp. locally absolutely p-integrable) members of 
Ad(~).  

�9 oo a Stochastic integrators. Let L~.,o~(R+) [resp. Lno-).,o~( +)] be the linear 
space of all measurable, locally bounded functions from a+ to Y [resp. 
to B(Y), the Banach space of bounded endomorphisms of Y]. If 

oo a �9 feL-r.lo~(+) and ~r eL~v)jo~(a+), then ~rfis the member of L~.lo~(a+) given 
by (x f ) ( t )  = ~r(t)f(t), tea+. 

ForfeL2(a+) and ~r eL~-o.lo~(a+), define the operators a( f ) ,  a+(f),  
and ZOr) in L~(D, l"(L2(a+))) as follows: 

a( f )e(g) = < f, 

d 
a+(f)e(g) =d-~G e(g+ o'f)l~=0 

d 
Z (lc)e(g) = ~ e(e~'~f)t~ = o 

geLS(a+). 
These are the annihilation, creation, and gauge operators of quantum 

field theory. For arbitrary feL~,~or and tceL~v),=oc(R+), they give rise 
to the operator-valued maps A f, A~, and A,~ defined by 

Af(t)=a(fZio,o) 

A?(t)=a+(fZio,o) 

A,~(t) =Z (IrZ[0.o) 

te 0~+, where Z~ denotes the indicator function of the Borel set I_~ R+. 
The maps A/, A: ,  and A,, are stochastic processes, called the annihila- 

tion, creation, and gauge processes, respectively, when their values are identi- 
fied (as we do henceforth) with their amplifications on 9 ~  F(L2(R+)). These 

, are the stochastic integrators in the Hudson and Parthasarathy (1984) formu- 
lation of boson quantum stochastic integration, which we adopt in the 
sequel. 

Accordingly, if p, q, u, vE L~o~( ~ ) ,  f,  ~o a geL,r.lor +), and 
oo a treL~(r),loc( +) 

then we interpret the integral 

ft tp(s) dA,r(s)+q(s) dA/(s)+u(s) dA-~(s)+v(s) ds, to, teR+ (3.1) 
0 

as in Hudson and Parthasarathy (1984). 
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4. STOCHASTIC DIFFERENTIAL INCLUSIONS 

The rest of this paper will deal mainly with stochastic differential inclu- 
sions involving multivalued stochastic processes. 

Definition. 1, By a multivalued stochastic process indexed by I _  •+ we 
mean a multifunction on I with values in clos(~). 

2. If ~ is a multivalued stochastic process indexed by I~_ N+, then a 
selection of �9 is a stochastic process X:I - - ,~  with the property that 
X(t)edP(t) for almost all t e L  

3. A multivalued stochastic process �9 will be called (i) adapted:: if 
O ( t ) ~ t  for each teN+ ; (ii) measurable if t~--~d,.g(x, O(t)) is measurable 
for arbitrary x e ~ ,  r/,~D_@E; (iii)locally absolutely p-integrable if 
t~-+ II~(t)ll,,e, teE+, lies in L~o~(I) for arbitrary r/,~eD@E. 

Notation. 1. The set of all locally absolutely p-integrable multivalued 
stochastic processes will be denoted by L~o~(~)m,~. 

2. For pe(0, oo) and I~_N+, L~oc(Ix~)~nW is the set of maps 
~ : I x  ~ -+ clos(~) such that t~-~dP(t, X(t)), tel, lies in L{'o~(~)mv~ for every 

3.: If ~eLfo~(l x ~)~,~; then 

Lp(~)-  {~0eLfor ~0 is a selection of ~} 

4. In the sequel, f, geL~,lo~(N+), 7reL~v).~o~(N+), ~ is the identity map 
on 9t| and M is any of the stochastic processes Ay, A~-, A,~, and 
s~,sl, seN+, 

We introduce stochastic integral (resp. differential ) expressions as 
follows. 

I f  r L2o~(I x ~)m~ and(t, X)~ I x L!o~(~), then we make the definition 

0 ~(s, X(s))dM(s) =_ qT(s) dM(s): r ) 

This leads to the following notion. 

Definition. Let E, F, G, HeL~oc(IX ~)mvs and (to, Xo) be a fixed point 
of I x ~ .  Then, a relation of the form 

X(t)~Xo + (E(s, X(s)) dA,~ + F(s, X(s)) dAf(s) 
v t o  

+ X(s)) dA (s) + H(s, X(s)) ds), t~I 
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will be called a stochastic integralinclusion with coefficients E, F, G, and H 
and initial data (to, Xo). As an abbreviation, we shall sometimes write the 
foregoing inclusion as follows: 

dX(t) eE(t, X(t)) dA,~(t) + F(t, X(t)) dAy(t) 

+ G(t, X(t))dA~(t) +H(t, X(t)) dt (4.1a) 

almost all tel, 

X(to)=Xo (4 .1b)  

and refer to this as a stochastic differential inclusion with coefficients E, F, 
G, and H and initial data (to, Xo). 

Definition. By a solution of (4.1), we mean a weakly absolutely continu- 
ous stochastic process tpeL2oc(~) such that 

dq~(t) eE(t, q)(t)) dA,(t)  + F(t, q)(t)) dAf(t) 

+ G(t, ~(t)) dA;(t) +n(t,  q)(t)) dt 

almost all tel, 

~0(t0) = x 0  

Remark. 1. We shall prove the existence of  solutions to a stochastic 
differential inclusion with Lipschitzian coefficients. 

2. If  Jr '  is a subset of d ,  we write co ~/ / for  the closed convex hull of 
J / a n d  if ~ : I  • ~ ~ clos(~) ,  we define co � 9  I x ~ ~ clos(a~) by 

(co �9 )(t, x) = co O(t, x), (t, x ) e l  x 

3. Related to (4.1) is the following stochastic differential inclusion: 

dX(t) eco E(t, X(t)) dA~(t)+ co F(t, X(t)) dAf(t) 

+ co G(t, X(t)) dA+(t) + co H(t, X(t)) dt (4.2a) 

almost all tel, 

X(to) =xo (4.2b) 

4. Equivalent forms of (4.1) and (4.2) are established in Section 6 and 
the relationship between the solutions of (4 ,1)and (4.2) is investigated in 
Section 9. 

5. Two instances where quantum stochastic differential inclusions arise 
are the following. 

Quantum stochastic control theory. In this theory, there is a preas- 
signed compact subset ~,  called the space of  admissible controls, of some 
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topological space and one searches for solutions of the stochastic differential 
equation: 

dX(t) =p(t, X(t), c(t)) dA,~(t) + q(t, X(t), c(t)) dAy(t) 

+ u(t, X(t), c(t)) dA;(t) + q(t, X(t), c(t)) art 

X(to) =Xo 

(4.3) 

for almost all teI, where c : I ~  and p, q, u, and o are maps from 
I x ~ x cr z~ such that p(- ,  Z(- ), c(. )), q( . ,  Z(.  ), c(- )), u( . ,  Z( �9 ), c(" )), 
and v(-, Z(. ), c(. )) are adapted and lie in L ~ ( ~ )  for all ZEL~oJ~) and 
ceqr If we introduce the multivalued stochastic processes E, F, G, H defined 
by 

E( t, x) ==- {p( t, x, c) : ce~} 

F(t, x) ~ {q(t, x, c): c ~ }  

G( t, x) =- { u( t, x, c): cEq~} 

n (  t, x) - { v( t, x, c): cEC~} 

(t, x )EIx  ~r then (4.3) may be written formally as (4.1) and the problem 
of  the existence of solutions to (4.3) for all admissible controls is reduced to 
the problem of the existence of solutions to (4.1) with these definitions of 
E , F , G , H .  

Regularization of  stochastic differential equations. In this case, one 
encounters stochastic differential equations of the form 

dX(t) =p(X(t)) dA,~(t) 4- q(X(t)) dAf(t) + u(X(t)) dA;(t) 

+ q(X(t)) dt 

X ( to)= Xo 

(4.4) 

for almost all t~I, wherep, q, u, v are discontinuous maps from ~ -* ~ such 
that if ZEL~oc(~g), andp(Z(t)) ,  q(Z(t)), u(Z(t)), and v(Z(t)) are defined for 
almost all t~l, then the maps p(Z(.  )), q(Z. )), u(Z(. )), and v(Z(. )) are 
adapted and lie in L~oc(~). Such a stochastic differential equation is said to 
be discontinuous. To discuss the problem of the existence of solutions to this 
equation, one may introduce the minimal upper semicontinuous multi- 
functions E, F, G, and H on .~ with convex values in clos(~) whose graphs 
(Aubin and Cellina, 1984) contain the graphs ofp,  q, u, and v, respectively. 
Then, E(x)= {p(x)}, F(x)={q(x)}, G(x)={u(x)}, and H(x)= {v(x)) at 
each point x of continuity of p, q, u, and v and one gets that any solution 
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to (4.4)  is a solut ion to the inclusion 

dX ( t) e E(X(t)) dA,~(t) + F(X( t) ) dAy.(t) + G(X ( t) ) dA+ ( t) 

+ H(X(O) dt (4.5) 

X( to) =xo 

for almost all teL Moreover, if @ is a solution of  (4.5) and p, q, u, and v 
are continuous at ~p(t) for almost all teI, then 

dtp( t) =p(q~(t)) dA,~(t) + q(q~(t)) dAy(t) + u( tp( t) ) dA+ ( t) + o( tp( t) ) art 

x(to) =xo 

for almost all t e l  i.e., q~ is a solution of  (4.4). 

5. L IPSCHITZIAN M U L T I F U N C T I O N S  

These are explained as follows. 
Let A : e c l o s ( ~ )  and I_~ R§ 

Definition. A map O : I  • A: ~ c los (~ )  will be called Lipschitzian if for 
each r/, ~ED_@E, there exists k~,r (0, oo) in L~oc(I) such that 

p,.r x), tD(t, x)) < k~.~(t)IIx-Yll ~.~ 

for all x, y e A :  and almost all tel. 
k ~, The functions { ,,~(.): 17, ~eD_@~} will be called Lipschitzfunctions 

for @; these are constants if @ does not depend explicitly on t. 

Remark. 1. The notion o f a  Lipschitzian map from I x  A: to clos(C) is 
analogously formulated using the Hausdorff  metric p. 

2. In the sequel, if @ is a map from I x  A: into the set of  multivalued 
sesquilinear forms on D|  i.e., if cI) maps I x  A: to 2 sesqt~ where 
sesq(D_@~) is the linear space of  sesquilinear forms on D_@~, then for 
( t , x )EIxA: ,  the value of  do(t,x) at r/,~eD@_lE will be denoted by 
@(t, x)(r/, 4)- Such a map @ will be called Lipschitzian (resp. continuous) 
if for arbitrary r/, ~ e D |  the map (t, x)~-+qo(t, x)(~h 4) from I x  A: to 2 c 
is Lipschitzian (resp. continuous). 

3. We shall sometimes employ the following result. 

Proposition 5.1. Let 

O: ~ - - ,  clos(~) 
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[resp. Q ~ dos(C)] be a Lipschitzian map with Lipschitz constants 

{k~4: q, ~eII])@E} 

[resp. {k~4: r/, ~eD@nc} ]. Then, the map co q~ (resp. co Q) is Lipschitzian 
with the same Lipschitz constants. 

Proof Let �9 be Lipschitzian. Let e > 0  be arbitrary and suppose t e l  
and x, x ' e ~ .  Then, for yeco  ~(x) there exist {y~} such that 

ly-Y', ,'q, cv, [ < e, Vr/, ~etD~E 
i r/,~ 

Next, for each i, there exists y~eO(x) such that 

Ily- Y~II,,r < p,.e(~(x), q~(x')) + e 

It follows that 

,7,~ i ,7,r 

~ "~- Z Zi(Po,r (~)(X')) Jr- ~) 
i 

< 2e + k*,.~llx- x'll,,r 

The result now follows by interchanging the roles of x and x'. A similar 
proof holds for co Q. This concludes the proof. �9 

6. EQUIVALENT FORMS OF (4.1) AND (4.2) 

Unless otherwise stated, E, F, G, and HeL2oc(Ix ~)mvs and (to, x0) is 
some fixed point of I • ~ .  

To establish equivalent forms of (4.1) and (4.2), we take Theorems 4.1 
and 4.4 of Hudson and Parthasarthy (1984), which describe the matrix 
elements of the quantum stochastic integral (3.1), as our point of departure. 

For q, ~e~)_@Ir, with rl=c| ) and ~=d|  define /z~,, v , ,  
c r~ : I~C by 

/~#(t) = (a(t) ,  ~r(t)fl(t))y 

v#(t) = ( f ( t ) ,  fl(t))y 

tT~( t) = ( a( t), g(t))v 

t e l  To these functions, we associate the maps pE, vF, tTG, P, and 
co P from I x ~ into the set of multivalued sesquilinear forms on D | E 
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defined by 

(laE)(t, x)(rl, ~) = {(11, pap(t)p(t, x)~) : p(t, x)~E(t, x)} 

(vF)(t, x)(rl, ~)= { (r I, v•(t)q(t, x)~): q(t, x)eF(t, x)} 

(crG)(t, x)(q, ~ )=  {Q/, cr~(t)u(t, x)~): u(t, x)~F(t, x)} 
(6.1) 

P(t, x)(rl, ~)=(pE)( t ,  x)(q, ~)+(vF)(t ,  x)(q, ~) 

+ (~G)(t, x)(rl, ~ ) + H(t, x)(r I, ~ ) 

(co P)(t, x)(r I, ~) =closed convex hull of P(t, x)(rl, 4) 

q, ~eD@E, (t, x )~Ix  ~ ,  where 

H(t, x)(rl, 5) = {v(t, x)(rl, ~): v(. ,  X(-)) 

is a selection of H( . ,  X(. )) VXeL~oc(d)} 

rt, ~eD@_ E, (t, x ) e l x  s~. 
The map P will play a fundamental role in the subsequent discussion. 
The following properties of P will be employed. 

Proposition 6. I. Let E, F, G, H lie in L~oc(I x ~ )  . . . .  Then: 
(i) For arbitrary r/, ~eD |  and XeL2o~(s~), every selection of the 

map tv-~P(t, X(t))(q, 5) lies in Z~oc(I). 
(ii) The map P is (a) Lipschitzian whenever E, F, G, H are Lipschitzian; 

(b) continuous whenever pE, vF, crG, H are continuous. 

Proof. ( i )This  follows from Hudson and Parthasarathy (1984), 
Theorems 4.1 and 4.4. 

(ii) Let r/. ~eD|  with rl=c| ) and ~=d|  
(a) This is a consequence of the following, easily derived inequality: 

p( e(t, x)(o, ~), P(t, y)(q, 5)) 

< IIz~(t)lpo,e(E(t, x), E(t, y)) 

+ Iva(t)lpo,e(F(t, x), F(t. y)) 

+ [cr~(t)lp..r x), G(t, y)) + p.,e(H(t, x), H(t, y)) 

(b) This is a consequence of the following, easily derived inequality: 

p( e(  t, x)( q, ~ ), P(s, y)( rl, 5)) 

<p((pE)(t ,  x)(rl, ~), (pE)(s, y)(q, ~)) 

+ p( ( vF)( t, x)( o, ~ ), ( vF)(s, y)( rl, ~ ) ) 

+ p((erG)(t, x)(rl, ~), (c~G)(s, y)(q, 5)) 

+ p(H(t, x)(r 1, ~), H(s, y)(q, 5)) 



7.014 Ekhaguere 

This concludes the proof. �9 

Remark. 1. If P is Lipschitzian, then its Lipschitz functions will be 
denoted by P {k,,,(.): 7, 4ED| 

2. The next result gives the equivalent forms of (4.1) and (4.2) alluded 
to above. 

Theorem 6.2. Let E, F, G, H~L~oc(lx ~)mvs. Then: 
(i) Problem (4.1) is equivalent to the following: 

d 
d--t (g,X(t)~)EP(t,X(t))(rh ~), X(to)=Xo (6.2a)p 

for arbitrary r I, ~e[) |  almost all tel. 
(ii) Problem (4.2) is equivalent to the following: 

d 
(r/, X(t)~)~(co P)(t, X(t))(tl, ~), X(to) =Xo (6.2b)e 

for arbitrary r/, ~6D| almost all tEL 

Proof (i) If (4.2) holds, then there are p, q, u, and v in L2(E(', X(. ))), 
Lz(F( ' ,X( ' ) ) ) ,  L2(G(', X('))) ,  and L2(H(',X('))),  respectively, such 
that (3.1) holds. It then follows from Hudson and Parthasarathy (1984), 
Theorems 4.1 and 4.4, that (6.2a)p holds. Conversely, given (6.2b)p, there 
exists Z(t)(T1, ~) in P(t, X(t))(q, ~) such that 

d 
-fit ( ~1, X( t)~) =Z(t)(r/,  ~) 

r/, 4~D~E.  As 17, ~ED_~E are arbitrary, Z(t)(T l, ~) has the form 

4 )  = <,7, 

where Z(t) has a representation of the type (3.1) for some p, q, u, and v 
in L2(E(', X(. ))), Lz(F(' ,  X(.))) ,  L2(G(', X(" ))), and L2(H(',  X(.))) ,  
respectively. Hence, (4.1) holds. 

(ii) By (i), it follows that (4.2) is equivalent to an inclusion of the form 
(6.2a)p, with E, F, G, and H replaced with co E, co F, co G, and co H, 
respectively. Denoting the right-hand side of (6.2a)p with these replacements 
by Pe~ X(t))(ll,~), we need only show that 

PC~ t, X(t))(ll, 4) = (co P)(t, X(t))(~l, ~) 

r/, ~D| Since for arbitrary 17, ~ID| the map x~--~(r/, x~), is linear 
and continuous from ~ to C, and P~~ ~) is the image of the 
right-hand side of (4.2) under this map, it follows that PC~ X(t))(T1, ~) is 
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closed and convex, and coincides with (co P)(t,X(t))(rl, ~) for arbitrary 
r/, ~eD@_IL This concludes the proof. �9 

Remark. Notice that since, in general, 

P(t, x)(r/, ~) #/3(t, <r/, x~))  

and 

(co P)(t, x)(ll, ~) #(co ff)(t, <rl, x~> ) 

r/, ~ED@F, (t, x ) e l x  .#, where P is some clos(C)-valued map on Ix  C, it 
follows that the inclusions (6.2a)v and (6.2b)v are, in general, not of the 
classical types described in Aubin and Cellina (1984). 

7. SOME FUNDAMENTAL STATEMENTS 

In connection with the subsequent results, we list the following 
statements. 

(Sj) Y: I ~ ~ is a weakly absolutely continuous adapted stochastic pro- 
cess with the property that for each r/, ~eH)~_ E and almost all tel, there is 
a positive number p,,~(t) such that 

d( d <r/, Y(t)~), P(t, Y(t))(r I, ~))<p~,e(t) 

($2) 7 > 0  is an arbitrary but fixed number and Qr, r is the set 

Qr,  r := { ( t ,  x)e Ix  .~: I Ix- Y(t)I1,,.~--< }' Vn, Zje O@E} 

($3) Each of the maps E, F, G, H is Lipschitzian from 
(clos(.~), r.) .  

($4) For each r/, ~ e D @_ n:, 

($5) Suppose 

Qr, r to 

,L,.r Y(to)ll,,.~ 

6~,r Vrl, ~jeD@E 
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($6) For arbitrary r/, ~ED_@~= and t e l  

[i l f  Ei ] E~,r = ~..r exp ds k~.~(s) + ds p..r exp dr k ~,r 
~ ~ tO 

($7) J is the subset of I defined by 

J--- {tel:  E.,~(t) < y Vr/, ~ED _@E} 

8. EXISTENCE OF SOLUTIONS TO (4.1) 

We consider the problem of the existence of solutions to (4.1). 
In the sequel, 

m,.~(t) = dskP,~(s), rh ~ED@_F-, tel  
o 

where {k P g: r/, ~ED_@E} denotes the set of Lipschitz functions for P. 

Proposition 8.1. Let {~i} ~ ~ be a sequence of weakly absolutely continu- 
ous maps from I to ~ which satisfy: 

(i) (t, r r, i>_l, for almost all tEJ. 
(ii) There exists a sequence { Vt}i~o c L~or such that (a) f' qJi(t)=Xo + ds V,.- l(s), i>_l 

o 

and (b) 

<-kr"(t)[~n'~(mn'r ~ ~- ft' ds [mq'~(t)-mn'~(s)]'-2"~ l~,,~,.)j `~ 
o 

= b,,~,i-2(t) 

for almost all teJ.  Then (c) 

II {Yp i ( t )  - ( I ) i -  1 (t)I1.,~ -< b.,r I (t), 
Proof. Let (i) and (ii) hold. Then 

]l ~YPi( t )  - -  r  1 ( t) II ~,r 

= ]I,i ds (17, [v,_,(s)-v,-2(s)],) I 

i>2,  teJ 

[by (ii)(a)] 
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< ,is (rl,.,(s)~)-~ (,1,'~,-.(~)~) 
o 

< ds b~,~.,-2(s) [by (ii)(b)l 
0 

=b,,~,i-l(t), i>2, t s J  

This concludes the proof. [] 

Remark. The following is a result concerning the existence of solutions 
to (4.1), It also furnishes a generalization of the classical Gronwall inequality 
(Walter, 1964). 

Theorem 8.2. Suppose that (SI)-(S7) hold and E, F, G, and H are 
continuous from I x  ~ to (clos(~), rH). Then, there exists a solution q) of 
(4.1) such that 

[[~(t)- Y(t)H,,r teJ  (8.1a) 

and 

for almost all teJ,  q, ~eD _~E. 

Proof. The proof (as well as that of Theorem 9.1) is an adaptation of 
the arguments employed in Aubin and Cellina (1984), Theorem 2.4.1, and 
will be accomplished by constructing a rw-Cauchy sequence {q).(t)}.a0 of 
successive approximations of �9 with the property that the sequence 
{(d/dt)(rh q).(t)~)}.~o is also Cauchy in C for arbitrary q, ~ s D ~ : .  

In what follows, let rl, ~ e D ~ E  be arbitrary. 
First, .observe that by ($1), (d/dt)(rL Y(t)~) is not necessarily in 

e(t ,  r(t))(q,  ~), teL 
Define ~o to be Y. Then ~o is adapted. 
By Aubin and Cellina (1984), Theorem 1.14.2, there is a measurable 

selection Vo(" )(r/, ~ )~P( . ,  ~o(" ))(q, 4) such that 

d 
] V0(t)(r/, ~ ) - 5  (77, ~o(t)~)] 

= d (  d (tl, ~o(t)~), P(t, ~o(t))(r/, ~)] almost all t eJ  
',at / 
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By (SO, the right-hand side is majorized by p,.~(t). As the map 
(rl, ~ )~-* Vo(t)(11, ~ ) is a sesquilinear form on D _~ n: for almost all t e J, there 
is Vo(t)e~ such that 

V0(t)(r/, ~) = (77, Vo(t)~) 

for arbitrary r/, ~eD| and almost all teJ. Since 110(" )(r/, 4) is locally 
absolutely integrable, ~'oeL~o~(~). 

Now define ~ by 

~ t 

#Pl(t)=Xo + ds Vo(s), t~J 
" to 

As Vo(t)E~ for almost all tEJ, it follows that ~ l ( t )E~ , ,  i.e., ~1 is adapted. 
Furthermore, for tEJ, 

II~ , ( t ) -  ~o(t)II..g ~ Ilxo- ~(t0)II n.g 

f01 I + ds Vo(s)(r~, ~) - ~  <11, ~,o(s)~> 

.f' < &,.~ + ds p,.~(s) 
" t O  

by (S0 and (S4). 
Indeed, there exists a sequence {~i}~zo of weakly absolutely continuous 

maps from I to ~ satisfying (i) and (ii) of Proposition (8.1), and hence its 
assertion. 

To prove this claim, assume that {~}0~t<, has already been defined 
and satisfies (i) and (ii) of Proposition (8.1). It will be demonstrated that 
we can find a map ~,+l : J - - , d  for which (i) and (ii) of Proposition (8.1) 
also hold. 

By Aubin and Cellina (1984), Theorem 1.14.2, there exists 
1I.(-)(r/, ~ )~P( . ,  ~ . ( - ) ) (q ,  ~) such that 

I(r/, @.( t )~)-  V,(t)(rl, ~)l 

= d (  d (r/, O.(t)~), P(t, O.(t))(r/, ~)),  a.e. on J 

As (Tl,~)~--~V,(t)(rl,~) is a sesquilinear form on D@_~: for almost all 
teJ, there is V.ELlo~(sTr such that V.(t)(rl, ~)=(r / ,  V,(t)~), a.e. on J. 



Quantum Stochastic Differential lucluslous 

Define @~+ I by 

~ .+  t(t) =X0 + f 
J,0 

Then, 

ds V.(s), tEJ 

I 
=Krl, V,(t)~)-(rl ,  V~-i(t)~) I 

<P(t, Cn(t))(q, ~), P(t, r h ~) 

k ~,~(t)1[ On( t )  -- ~P . - , ( t ) ] ]  .,r 
p k.,g(t)b.,r 

2019 

(8.1c) 

As P ( ' ,  
Hence,  

ds v~(s), i>_ o 

~t t r ds V(s), teJ  
0 

�9 )(r/, ~) is continuous and has closed values, its graph is closed�9 
as (r/, V,.(s)~)eP(s, Cpi(s))Oh~) a.e. on J, it follows that 

From Proposition 8.1 (ii)(a), 

r f, ~ 

Hence, 

which proves (ii)(b) of  Proposition 8.1. 
Moreover, for teJ, 

II r  +, (t) - r  (t)II .,~ 

< ]l~,(t) - Co(t)[I ~.r + ' ' "  + 11r +, (t) - r ~,r 
n 

< ~ b.,~.k(t) 
kffiO 

< En.~(t) < 7 (8.1d) 

This proves (ii)(c) of  Proposition 8.1. 
It follows from Proposition 8.1(ii)(c) that {r is rw-Cauchy and 

converges uniformly to some r  Also, from Proposition 8.1(ii)(b), 
we infer that for almost all tEJ, the sequence { V.(t)}.>0 is vw-Cauchy, 
whence {V.}.>0 converges pointwise a.e. on J to a map VeL~o~(~/). 
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(tl, V(s)~)~P(s, ~(s))(r/, 4) a.e. on J, whence 

d 
-~ <7, ~(s)~)~P(s, ~(s))(r/, ~), a.e. on J 

Finally, the inequalities (8.1a) and (8.1b) follow from (8.1d) and (8.1c), 
respectively. 

This concludes the proof. �9 

Remark. 1. The map Y which features in Theorem 8.2 will be called a 
quasisolution of (4.1), as it is not in general a solution of (4.1). 

2. We recall from Notation in Section 3 that Ad(~)wa~ is the set of all 
weakly absolutely continuous adapted stochastic processes. 

On Ad(~)w,c we place the locally convex topology ~wa~ whose generat- 
ing family {I. J~,~:r;, ~ED@~:) of seminorms is defined by 

r d I I•1,,r = II~(to)ll,,e+ f ds[--Q1, q~(s)~) 

where I is assumed henceforth to be of the form I= [to, T]. We write wac(~)  
for the completion of the locally convex space (Ad(~)w,~, rw,c). 

The family {l'l,,~ : n, ~D| induces a Hausdorff topology z~ ac on 
2 wa<~) in a manner similar to-that described in Section 2. Denoting the 
family of pseudometrics which generate this topology by 

we introduce the notion of a Lipschitzian map from ~ into 2 w~<~) as in 
Section 5. 

3. Let ~ be the map from ~ into 2 w~<p) defined by 

~(x) = {(pewac(~): ~p is a solution of (4.1) satisfying r 
Then ~ associates to x E ~  the set of solutions of (4.1) which start from 
x~J~ at the initial point toeL 

Suppose now that (x~ ,x2)e~x~  with IIx,'x211~,~_<6~.~___& 
Vr/, ~ED~_ IF. Then it follows from Theorem 8.2 that if ~p~ and q~ are two 
solutions of (4.1) such that (p~(to)= xl and q~(to)= x2, we have 

Iq'~ - q~l,,{ = II~0,(to) - ~(t0) 11,,~ 

<--IIx, - x211,.r +k~,~ ds E~,e(s) 
t 0 

___ IIx, - x~ll o,r exp[k ~.~(T- to)] 
0, ~ED| This leads to the following result. 
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Theorem 8.3. The map ~ from ar into 2 '~('a) is 
Lipsehitz constants {exp[k~,r to)]: r/, {e D@II:}. �9 

2021 

Lipschitzian with 

9. A CLOSURE THEOREM 

In what follows, T is some fixed positive number and /=[to,  T]. 
Furthermore, for any x e ~  and ? > 0, introduce 

ax0.~ ~ { x e ~ :  IIx- xoll,.~ ~ r vr/. ~e D~E} 

In this section, E, F, G, and H are maps from ~ to clos(~) such that 
E(X(.)), F(X(.)), G(X(.)), and H(X(.)) lie in L~o~(~),o~ for all 
xeL,L(~). 

We investigate the relationship between the solutions of the stochastic 
differential inclusions: 

almost all tel, 

and 

almost all t e l  

dX(t) eE(X(t)) dA.(t)+ F(X(t)) dAf(t) 

+ G(x(t)) dA-~(t) + n(x(t))  dt (9.1a) 

X(to) =Xo (9.1b) 

dX(t) eco E(X(t)) dA.( t )+ co F(X(t)) dAy(t) 

+co G(X(t)) dA+(t)+co H(X(t)) dt (9.2a) 

Theorem 9.1. Let y be a positive number, xo some fixed point in .s~, 
and E, F, G, Hbe  Lipschitzian and continuous from Qxo,r to (comp(~),  rH). 
Then, for every e > 0  and every solution W of (9.2) such that W(t) lies in the 
interior of Qxo.r for teL there exists a solution * of (9.1) such that 
I[~(t)-W(t)ll,.~<e Vrl, ~eD@_ E, teL 

The following result is a generalization of the Filippov- Wa~ewski relaxa- 
tion theorem (Aubin and Cellina, 1984, Theorem 2.4.2) (Filippov, 1967, 
1971 ; Wa~ewski, 1962) for classical differential inclusions. 

X(to) =Xo (9.2b) 
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Proof. By Theorem 8.2, we need only demonstrate the existence of a 
quasisolution Y of (9.2) on I such that 

IIW(t) - Y(t) ll,.e < e/2 

Y(0) =x0 

and 

a.e. on I 

d(  d (r/, Y(t)~),P(Y(t))(rl,~))<sk~,~{2[expk~,r "l 

For, by setting 57,r and 

P,I,r = ek e,r ke,~( T -  to) - 11}-' 

it then follows from Theorem 8.2 that there exists a solution �9 of (9.1) such 
that 

II~(t)-  Y(t)lt,.r < ~/2 on I n  (domain of ~ )  

whence 

IIW(t)-dP(t)llo,e<_e a.e. on I 

We proceed to construct Y with the alleged properties. 
Define 

/j_=[t0_ F (j-1)(T-to)2n ' t~247176 J 

This gives a partition {/j}~<j<~ of I into intervals of length (T-to)/(2n). 
Denote p(P(Qxo,r)(rl, ~), {0}) by IIPII,,r 77, ~eD_@~:. Then IIPll,,r 

is finite for each 17, ~ D ~ E  since P(Qxo,r) is compact (P  is defined as in 
Section 6). 

By Proposition 5.1, the map co P is Lipschitzian whenever P is such 
and has the same Lipschitz constants k ~,r as P. As 

p(P(~F(t)) (17, ~ ), P(V(s))) (r/, ~ ) < k e,r It ~F(t) - V(s)II ~,r 

and 

whence 

~ t (r/, [~F(t) -W(s)]~>E dr P(W(r))(r/, ~) 

~t tv S II't'(t)-'e(s)ll,,e_< II PIl,,e dr= II PIl,.r sl 
A S  
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it follows that 

p(P(W(t))(O, ~), P(W(s)))(7/, ~)-< [I ell~,ck~,glt-s[, s, t e l  

Hence, for te/j, the set (co P)(~I'(t))(r/,~) is contained in an 
(11 ell ~,r ~,~(T- to)/(2n))-neighborhood of (co P)(q~(b))(~, ~ ). In particu- 
lar, (d/dt)<r I, W(t)~> belongs to this neighborhood for almost all te/j since 
~P is a solution of (9.2). 

Let {1,,r r/, ~eD_~E} be positive numbers (which will be explicitly 
specified below) and fixj in {1 , . . . ,  2n}. For r/, ~ D @ E ,  let 

be a finite Borel partition of U {(co P)(q*(t))(r/, ~)" te/j} satisfying 

sup{IX, - 2~1: ~.,, ~2eSk,,r < 1,,r Yk = 1, 2 , . . . ,  Nj (9.3) 

and define Ek by 

Ek=--{t~ d <rl, ~rlt(t),>eSk, n,, Vrl, ,6D~_~_} 

Let ~gk(r/, ~) be some point in Sk, or Then, 

d(~k(r/, ~), (co P)("P(b))(O, ~ )) < II Pti ~, ~k~,e(T- to)/(2n) 

and there are finitely many points Yk,l(O, ~)e(CO e)(~P(b))(r/, ~) as well as 
ak,~> 0 satisfying ~,j ak,~ = 1 such that 

I 

] 2 p ~k(O, ) -- ~. a~,tYk, t(rl, ~) < II PII o,r ~,r (9.4) 
I 1 

As (r/, ~)~--,8.,~ and (r/, ~)~--, Y~,~(r/, ~) are sesquilinear on D| there are 
~ and Yk,l in ~ such that 

and 

Y~,t(r/, ~ ) = < r/, Y~,,~ > 

Then, by (9.3) the simple operator 
N~ 
X 

k = l  

satisfies 

and 

a.e. on/j. 

d(<~, ~k~>, (co e)(~(b))(O,  ~)) ~ II ell ,,~k ~,~(T- to)/(2n) 
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Now the set Ek may be partitioned into measurable subsets Ekt such 
that IEkll = ak~lEkl, where IDI denotes the Lebesgue measure of D; for how to 
do this, see Aubin and Cellina (1984), Theorem 2.4.2. 

Next, introduce the map Y : I ~  as the simple map such that 
~IE~ = Yk is given by 

Yk( t) = ~. Yk,tZ ekt( t) 
I 

Then, define Y : I - - * ~ b y  

Y ( t ) = x 0 +  ds ~(s) 

We shall show that for n sufficiently large, Y is a quasisolution that approxi- 
mates ~F. To this end, observe that 

d 
-~ ( 0 ,  Y( t )~)~P(a~o.r ) ( r l ,  4)  a.e. on I 

showing that Y is Lipschitzian with the same Lipschitz constants t1Pllo,r 
as ~F. 

By taking n sufficiently large, it suffices to approximate W at the nodal 
points {t j}~l.  

Set 

c,,~ =min{1, (2k e e ,,r k o,c( T -  to) - 1]) -1} 

Since t e I implies t lies in some/y and 

II Y(t)  - ~F(t)l[ ,,r < II Y(t j)  - W(tj)I1,,~ + II Y(t)  - Y(tj)II .,e 

+ II't'(t) - q'(tj)II ,.~ 

then as 

and 

IIV(t) - W(tj)II 0,~ ~ II ell 0,~lt- tjl ~ II ell , , ~ ( T -  to)/(2n) 

II Y(t)- Y(tj)ll~.e ~ II e l l , . r  to)/(2n) 
in order to secure the estimate 

II Y(t)  - W( t)I1,.~ --- c,.~/3 
it suffices to have both 

and 

II Y(tj)- W(t)I1..r ~ co,r 

1/n < (c,,~E)/[611PII.,r to)] (9.5) 
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This defines a lower bound for n. We establish two other lower bounds for 
n as follows. 

Using 

f ljds 0 (s) = ~'. [EklOk 
k 

and 

f ds ~'(s)=)-'. f~jds Yklxe~,(s)=Y~ IEklak, Yk~ 
k,I k,l  

it follows that 

-<E IEkl(ll ell~,r162 [by (9.4)] 
k 

< I/A(II e II 2,r •)/n 
If tr is a point of subdivision, then 

<[(T-to)ll  2 p - P l l , . r 1 6 2  

and also 

ir if v~(t~) - ds O(s) <_l.,~(r-to) 
rl,e 

Therefore, we may ensure that 

II Y( tr) - V( tr)I1,,r c.,et/6 
by requiring that 

( T -  to)ll 2 P P[] ~.ek .,e/n < c..r (9.6) 

thereby obtaining a second lower bound for n, and choosing 

l..e=co,~.e/12( T -  to) 
As (d/dt)(rl, Y(t)~) lies in e(~J(b))(rl, 4) whenever the derivative 

exists, we get 

d ( ~  (r/, Y(t)r~, P(~(t))(r/, ,~))<,lPll~.r 
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and 

Hence 

Ekhaguere 

p( P(~F(t))(11, ~)), P( Y(t))(rl, ~) 

<k~.~llW(t)- < e < p Y(t) I1..r k.,r e/6 _ k .,~c,.~e/2 

d(  d (r/, Y(t)~), P(Y(t))(rl, ~)) 

< k ~e,~cn. ~ ~/2 + (T - to)II P II ,.~k ~.J2n 

< k~,r exp[k~,~(T- to)] - 1}-1+ ( T -  t0) ll P[l..~ke, J2n 

So, by choosing n large enough so as to satisfy (9.4), (9.6), and the constraint 

( T -  to)II PII ..J2n < ~{4 exp[k ~.r to)] - 1 }-' 

we ensure that 

IlY(t)-W(t)lln.r for a.e. te l  

and 

d(  d (77, Y(t)~), P(Y(t))(~, ~))<k~,~e{2 exp[k~.r l} -1 

This concludes the proof. �9 

Remark. A member X of A d ( ~ )  is called continuous if the map t ~ X(t) 
of I =  [to, T] to ~ is continuous. Denote the set of all the continuous mem- 
bers of A d ( ~ )  by Ad(~)r We may supply Ad(~)~o. with the locally 
convex topology rcon whose family {11" IIr : r l, ~ D _ ~ E }  of seminorms 
is defined by 

IlSllcon,n.r sup IIX(t)ll,,r 
te[t0,T] 

17, ~ D|  It=. Then, Theorem (9.1) may be rephrased as follows: 

Theorem 9.2. The set of solutions to (9.1) is Zco,-dense in the set of 
solutions to (9.2). 

Thus, Theorem (9.1) is a closure or density theorem. 
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